Acta Crystallographica Section E

## Structure Reports <br> Online

## Heptaaqua(isonicotinato- $\left.\kappa^{2} O, O^{\prime}\right)$ lanthanum(III) 1,5-naphthalenedisulfonate

ISSN 1600-5368

## Shan Gao,* Zhi-Biao Zhu, Li-Hua Huo and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title complex, $\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$, consists of heptaaqua(isonicotinato)lanthanum(III) cations and 1,5 -naphthalenedisulfonate dianions. The $\mathrm{La}^{\mathrm{III}}$ atom is nine-coordinate, involving two carboxyl O atoms from one isonicotinate group and seven water molecules. The cations and anions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a three-dimensional supramolecular framework.

## Comment

The study of the supramolecular chemistry of organosulfonates has received growing attention in recent years (Côté \& Shimizu, 2003). The sulfonate groups are generally incorporated into inorganic-organic networks and are engaged in hydrogen-bond interactions. 1,5-Naphthalenedisulfonic acid $\left(\mathrm{H}_{2} \mathrm{NDS}\right)$, with its rigid structure and two functionally active $\mathrm{SO}_{3}$ groups in two well separated positions, can exhibit versatile binding modes and also form regular hydrogen bonds (Cai, 2004). To the best of our knowledge, only four metal complexes, $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,5-\mathrm{NDS})(M=\mathrm{Mg}$, $\mathrm{Co}, \mathrm{Cu}$ and Ni ) have been reported, in which the metal ions are coordinated by six water molecules, while the sulfonate dianions serve as hydrogen-bond acceptors (An et al., 2004; Cai et al., 2001; Chen et al., 2002; Cai, 2004). However, there is little structural information about $\mathrm{La}^{\mathrm{III}}$ complexes with $1,5-$ naphthalenedisulfonate. A search of the Cambridge Structural Database (Version of 2002; Allen, 2002) reveals one complex with this ligand, namely $\mathrm{La}(\mathrm{OH})(1,5-\mathrm{NDS})\left(\mathrm{H}_{2} \mathrm{O}\right)$, in which the $\mathrm{La}^{\text {III }}$ atoms are eight-coordinate and bridged by $1,5-$ naphthalenedisulfonate ligands, forming a layer structure (Snejko et al., 2002). In the present work, a new La ${ }^{\text {III }}$ complex, viz. $\quad\left[\mathrm{La}(\right.$ isonicotinate $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right](1,5-\mathrm{NDS})$, (I), has been obtained from the self-assembly reaction of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, isonicotinic acid and sodium 1,5-naphthalenedisulfonate. Its crystal structure is reported here.


As shown in Fig. 1, the asymmetric unit of (I) consists of an $\left[\mathrm{La}(\text { isonicotinate })\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]^{2+}$ cation and a 1,5-naphthalenedisulfonate dianion. In the cation, the $\mathrm{La}^{\mathrm{III}}$ atom is nine-


Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the $30 \%$ probability level. Dashed lines indicate hydrogen bonds.
coordinate, involving two carboxyl O atoms from one bidentate chelate isonicotinate group and seven water molecules. The cation interacts with the 1,5-naphthalenedisulfonate dianion via hydrogen bonds (Table 1). The structure can be envisaged as one in which layers of anions alternate with layers of cations, the layers being linked via extensive intermolecular hydrogen bonds, giving rise to a three-dimensional network (Fig. 2 and Table 2).

## Experimental

The title complex was prepared by the addition of an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.33 \mathrm{~g}, 10 \mathrm{mmol})$ to an aqueous solution $(20 \mathrm{ml})$ of sodium 1,5-naphthalenedisulfonate $(3.32 \mathrm{~g}$, $20 \mathrm{mmol})$ and isonicotinic acid ( $1.11 \mathrm{~g}, 10 \mathrm{mmol}$ ). Colorless prismatic single crystals were obtained from the filtrate at room temperature after several days. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{LaNO}_{15} \mathrm{~S}_{2}$ : C 28.54, H 3.59, N 2.08\%; found: C 28.57 , H 3.55, N $2.11 \%$.

## Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$
$M_{r}=673.41$
Monoclinic, $P 2_{1} / n$
$a=6.4340(13) \AA$
$b=22.876$ (5) $\AA$
$c=16.273$ (3) $\AA$
$\beta=95.87$ (3) ${ }^{\circ}$
$V=2382.6(8) \AA^{3}$
$Z=4$

## Data collection

## Rigaku R-AXIS RAPID <br> diffractometer <br> $\omega$ scans <br> Absorption correction: multi-scan <br> (ABSCOR; Higashi, 1995) <br> $T_{\text {min }}=0.535, T_{\text {max }}=0.677$ <br> 20748 measured reflections

$$
\begin{aligned}
& D_{x}=1.877 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 19908 \\
& \quad \text { reflections } \\
& \theta=3.1-27.5^{\circ} \\
& \mu=2.04 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.35 \times 0.26 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

5360 independent reflections 4620 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-29 \rightarrow 29$
$l=-21 \rightarrow 21$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
5360 reflections
358 parameters
H atoms treated by a mixture of independent and constrained refinement


Figure 2
Packing diagram of the title complex. Hydrogen bonds are shown as dashed lines and H atoms attached to C atoms have been omitted.

Table 1
Selected geometric parameters ( $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

| La1-O1 | 2.520 (4) | La1-O4W | 2.524 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{La} 1-\mathrm{O} 2$ | 2.740 (3) | La1-O5W | 2.572 (3) |
| La1-O1 $W$ | 2.568 (3) | La1-O6W | 2.513 (4) |
| La1-O2W | 2.514 (4) | La1-O7W | 2.488 (4) |
| La1-O3W | 2.624 (4) |  |  |
| O1-La1-O2 | 48.96 (11) | O1 $W$-La1-O5 $W$ | 140.47 (13) |
| $\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 1 W$ | 79.11 (13) | O1 $W$-La1-O6W | 78.25 (13) |
| $\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2 W$ | 123.40 (13) | $\mathrm{O} 1 W-\mathrm{La} 1-\mathrm{O} 7 W$ | 139.23 (14) |
| O1-La1-O3W | 138.36 (15) | $\mathrm{O} 2 W-\mathrm{La} 1-\mathrm{O} 3 W$ | 72.86 (14) |
| O1-La1-O4W | 147.53 (12) | $\mathrm{O} 2 W-\mathrm{La} 1-\mathrm{O} 4 W$ | 81.05 (14) |
| O1-La1-O5W | 74.25 (12) | $\mathrm{O} 2 W-\mathrm{La} 1-\mathrm{O} 5 W$ | 138.15 (12) |
| O1-La1-O6W | 79.68 (14) | $\mathrm{O} 2 W-\mathrm{La} 1-\mathrm{O} 6 W$ | 145.17 (13) |
| O1-La1-O7W | 90.56 (15) | $\mathrm{O} 2 W-\mathrm{La} 1-\mathrm{O} 7 W$ | 71.96 (12) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 1 W$ | 68.08 (12) | $\mathrm{O} 3 W-\mathrm{La} 1-\mathrm{O} 4 W$ | 64.55 (13) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 2 W$ | 74.45 (13) | O3W-La1-O5W | 121.53 (12) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 3 W$ | 125.78 (11) | $\mathrm{O} 3 W-\mathrm{La} 1-\mathrm{O} 6 W$ | 73.06 (14) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 4 W$ | 147.12 (14) | $\mathrm{O} 4 W-\mathrm{La} 1-\mathrm{O} 5 W$ | 73.37 (12) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 5 \mathrm{~W}$ | 111.78 (11) | $\mathrm{O} 4 W-\mathrm{La} 1-\mathrm{O} 6 W$ | 90.76 (15) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 6 W$ | 121.76 (13) | $\mathrm{O} 4 W-\mathrm{La} 1-\mathrm{O} 7 W$ | 76.38 (15) |
| $\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 7 W$ | 75.40 (13) | $\mathrm{O} 5 W-\mathrm{La} 1-\mathrm{O} 6 W$ | 68.72 (12) |
| $\mathrm{O} 1 W-\mathrm{La} 1-\mathrm{O} 2 W$ | 81.15 (13) | O5W-La1-O7W | 70.18 (13) |
| $\mathrm{O} 1 W-\mathrm{La} 1-\mathrm{O} 3 W$ | 65.09 (12) | $\mathrm{O} 6 W-\mathrm{La} 1-\mathrm{O} 7 W$ | 138.89 (12) |
| $\underline{\mathrm{O} 1 W-\mathrm{La} 1-\mathrm{O} 4 W}$ | 129.50 (13) |  |  |

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | D-H | H $\cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4^{\mathrm{i}}$ | 0.85 (4) | 1.90 (5) | 2.726 (5) | 162 (5) |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 3$ | 0.85 (5) | 1.95 (5) | 2.789 (5) | 171 (7) |
| O2W-H2W1 $\cdots$ O 5 | 0.85 (6) | 1.91 (6) | 2.747 (5) | 172 (7) |
| $\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O}^{\text {ii }}$ | 0.85 (4) | 1.96 (4) | 2.800 (6) | 175 (7) |
| $\mathrm{O} 3 W-\mathrm{H} 3 W 1 \cdots \mathrm{O} 3$ | 0.85 (4) | 2.41 (4) | 3.111 (5) | 140 (5) |
| $\mathrm{O} 3 W-\mathrm{H} 3 W 2 \cdots \mathrm{O} 5^{\text {iii }}$ | 0.85 (4) | 2.03 (3) | 2.878 (5) | 173 (6) |
| $\mathrm{O} 4 W-\mathrm{H} 4 W 1 \cdots \mathrm{O}^{\text {iv }}$ | 0.85 (5) | 1.95 (3) | 2.755 (6) | 158 (7) |
| $\mathrm{O} 4 W-\mathrm{H} 4 W 2 \cdots \mathrm{~N} 1^{v}$ | 0.85 (3) | 1.95 (4) | 2.783 (6) | 168 (7) |
| O5W-H5W1 $\cdots$ O $8^{\text {iv }}$ | 0.85 (4) | 1.99 (4) | 2.833 (5) | 177 (6) |
| $\mathrm{O} 5 W-\mathrm{H} 5 W 2 \cdots \mathrm{O} 2^{\mathrm{iii}}$ | 0.85 (4) | 2.12 (3) | 2.891 (5) | 151 (6) |
| $\mathrm{O} 6 W-\mathrm{H} 6 W 1 \cdots \mathrm{O} 2^{\text {iii }}$ | 0.85 (4) | 1.97 (5) | 2.791 (5) | 164 (7) |
| $\mathrm{O} 6 W-\mathrm{H} 6 W 2 \cdots 3^{\text {vi }}$ | 0.85 (4) | 1.91 (4) | 2.757 (5) | 175 (7) |
| $\mathrm{O} 7 W-\mathrm{H} 7 W 1 \cdots 8^{\text {vii }}$ | 0.85 (5) | 1.95 (4) | 2.682 (5) | 143 (6) |
| $\mathrm{O} 7 W-\mathrm{H} 7 W 2 \cdots \mathrm{O}^{\text {ii }}$ | 0.86 (5) | 2.40 (3) | 3.211 (7) | 160 (7) |
| $\mathrm{O} 7 W-\mathrm{H} 7 W 2 \cdots \mathrm{O} 7^{\text {ii }}$ | 0.85 (5) | 2.51 (6) | 2.998 (6) | 117 (5) |

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation. The H atoms of the aqua ligands were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of $0.85(1)$ and $1.39(1) \AA$, respectively, and with $U_{\text {iso }}(H)=1.5 U_{\text {eq }}(\mathrm{O})$. The final difference Fourier map had a large peak at about $1 \AA$ from La1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC,
2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054G036) and Heilongjiang University for supporting this work.

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
An, D.-L., Gao, C.-L., Zhu, Z.-B., Huo, L.-H. \& Zhao, H. (2004). Acta Cryst. E60, m111-112.
Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.
Cai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. \& Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.
Chen, C. H., Cai, J., Liao, C. Z., Feng, X. L., Chen, X. M. \& Ng, S. W. (2002). Inorg. Chem. 41, 4967-4974.
Côté, A. P. \& Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Snejko, N., Cascales, C., Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Ruiz-Valero, C. \& Monge, M. A. (2002). Chem. Commun. pp. 1366-1367.

